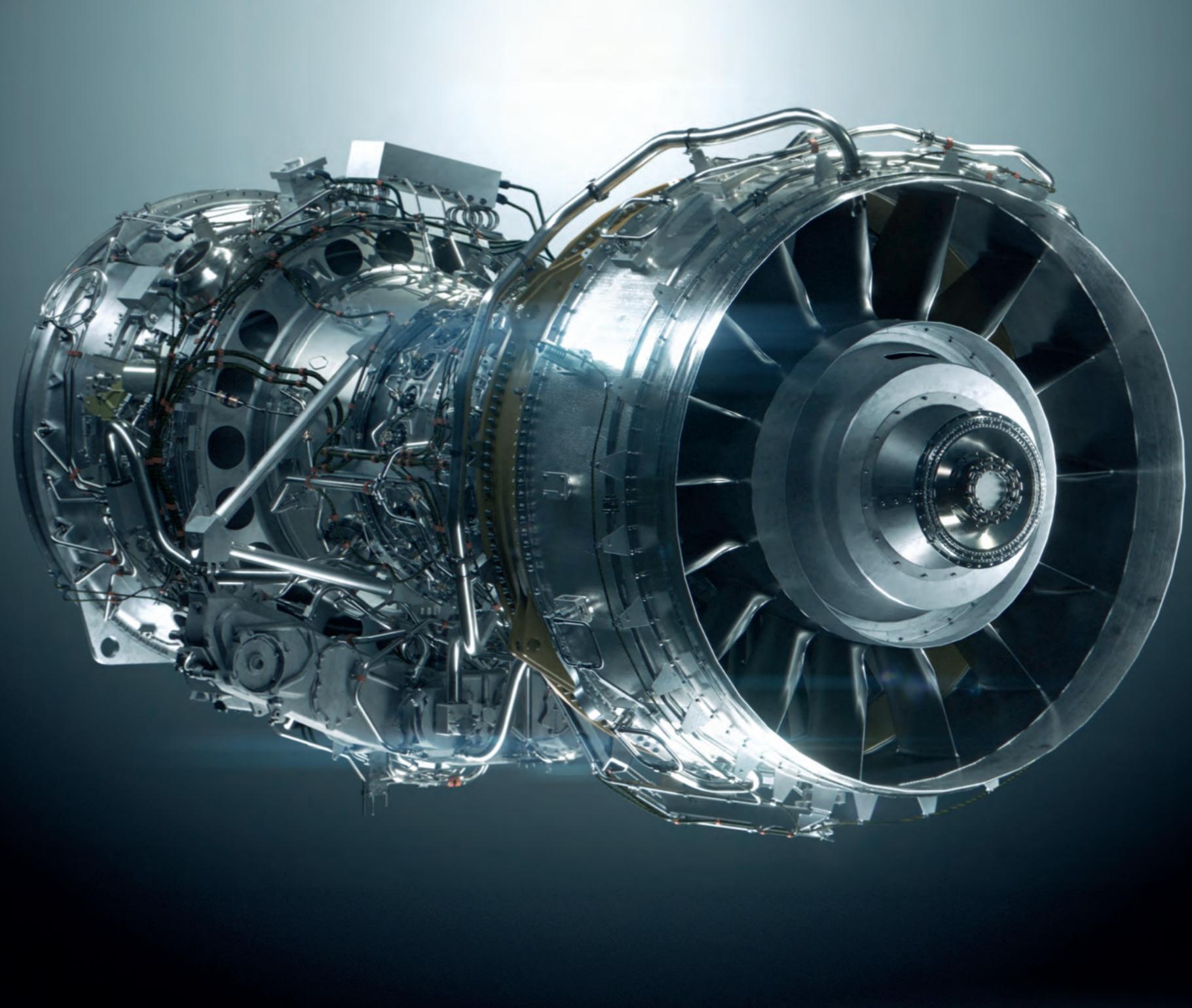


MT30
将来船舶向け動力

MT30は2008年に米海軍初のフリーダム級LCSでの運用が開始されました。推進システムは二基のMT30とウォータージェット推進用ディーゼルエンジン二基による、洗練されたCODAG(ディーゼルエンジンとガスタービンエンジン併用)機械駆動構成となっており、40ノット超の速度による優れた運用性能を実証しています。

米海軍の統合電気推進のズムウォルト級駆逐艦および英海軍の新型空母にはMT30オルターネーター・パッケージが採用され、伊海軍の旗艦であるトリエステ揚陸艦には二基のMT30が主機として採用されています。


高い出力密度特性を持つMT30は単基ガスタービンによるハイブリッド推進システムとして、韓国海軍の大邱級フリゲート艦ならびに忠南級フリゲート艦に採用され、蔚山級フリゲート艦にも搭載予定です。同様の推進構成はBAEシステムズのGCS設計の中核をなし、英海軍の画期的な26型フリゲート艦、豪海軍ハンター級フリゲート艦、加海軍リバー級駆逐艦に採用されています。MT30は海上自衛隊の新型護衛艦30FFMの単基ガスタービンCODAG構成、またイージス・システム搭載艦プログラムのツインハイブリッド電機機械構成にも採用されています。

わずか10年ほどの間に、MT30は数多くの国の先進的艦艇プログラムに選ばれるガスタービンとなっています。

2008年より運用開始された米海軍の単胴型沿海域戦闘艦にて、MT30は40ノットを超える最大速力を提供しております

© LOCKHEED MARTIN

船舶市場に於ける最先端・最新のガスタービン技術

- 定格出力36MW又は40MW(摂氏38度まで)
- 出力損失のない優れた性能維持能力
- 航空用トレントエンジンファミリーの一員として優れた信頼性と最適化された補用品供給
- 自己完結型、シングルリフトパッケージ
- 40%を超える熱効率
- モジュール設計による容易なエンジン整備

信頼性と整備性での 厳しい要求を満たす設計

優れた性能維持

全運用期間に亘る最大出力と効率的な燃料消費の提供:

- ・ 設計限界値を下回る摂氏70度のタービン運用
- ・ コンパクトで頑丈な構造によりガス流路の耐性を維持

運用上のフレキシビリティ


エンジン再始動に於ける運用上の制限はありません。エンジンの通常あるいは非常停止後においても、いつでもエンジンの再始動が可能です。フリーパワータービンにより出力速度及び軸速度を広範囲で適合させることができます。これにより、MT30は一定の三乗則出力曲線で運転することができ、広範な駆動構成を通じて出力させることができます。このことから、優れた速度制御特性も得られ、ジェネレーターに於ける急激な負荷変動に対する振動回復も可能となります。

型式認証

- ・ ABS - 36MW、40MWの型式承認取得
- ・ LR - 船舶及び艦艇向けとして36MW、40MWの型式承認取得

MT30の特徴

- ・ フリーパワータービンによる高圧縮比ガスジェネレーター
- ・ 低振動ユニット、弾性のあるマウント
- ・ 完全統合型デジタル制御・モニタリングシステム
- ・ 電気式または油圧式始動

主要構成部品

1 エアインレット

- ・ 小型で吸気口の少ない放射形状

2 エンジンの防音外装設備

- ・ エンジン外装の換気と熱管理が可能
- ・ 統合火災防止システム
- ・ システムへのアクセス性及び整備性の最適化
- ・ 最大外部ノイズは1mにて85 db(A)以下で設計

3 ガスタービン

- ・ ワイドボディ機用に開発されたトレントエンジンファミリーから派生
- ・ モジュール構造
- ・ トレント800及び産業用トレントから派生した頑丈な4段パワータービン

4 排気コレクタ

- ・ 機能最適化のためのロスの少ない設計

5 出力シャフト

- ・ 3600 rpm - オルタネーター原動機
- ・ 3300 rpm - 機械式原動機

6 ベースプレート

- ・ 全ての補機システムをサポートするスチール構造
- ・ 一体型構造により一回の吊り上げ作業でガスタービンと外装を搭載可能

統合制御システム

- ・ 統合制御、ガスタービンの監視及び補機サポートシステムの提供

MT30 将来船舶向け動力

最新設計 実証済の技術

小型軽量のMT30は二軸、高圧縮比のガスジェネレーター構造となっており、フリーパワータービン、8段可変ジオメトリー中圧コンプレッサー及び6段の耐腐食高圧コンプレッサーから構成されています。3段の可変ベーンと噴出弁を備えており、コンプレッサーからIPデリバリーエアを連続的に流すことで、ベアリングのシール性保持及び冷却を行います。

産業用トレントや航空用トレント800からの派生型である4段フリーパワータービンは、頑丈なベアリング構造により高い信頼性を備えております。最新のブレード冷却技術を取り入れた信頼性が高い構成部品が

全体に組み込まれています。重要部品には海洋環境に耐え得る保護コーティングが施されており、整備作業を軽減させるとともにより長い運用期間を提供しています。通常燃料の使用において、MT30は改修せずに今後も含めた排気や排気煙に関する全ての法規制に適合します。

ガスタービンエンジンユニット(パワータービン含む)の重量は6,500kg、外装と補器を含んだモジュール全体の重量は30,000 kg程度であり(重量はオプションによって変動)、MT30は非常に優れた出力重量比をもたらします。容易な搭載を実現するためにモジュール全体をベースプレートに組み込む構造となっており、一回の吊り上げ作業で設置することで、時間及び費用を削減可能です。

信頼性整備研究はMT30の設計に於ける特徴の一つであり、これは整備要求が少ない本エンジンの基本設計概念と併せて、1週間当たり2時間未満の定期艦上整備というオンコンディション整備方式の実現に繋がっており、現代海軍の少ない乗員条件に於いて大きな利点になっています。

エンジンのアコースティック・エンクロージャは、艦上で整備作業を容易にし、艦艇乗員が複雑な整備作業をエンジンを取り卸すことなく行うためのスペースとアクセスを提供します。

エンジンの取り卸しが必要な場合には、運用者ご要望に応じて、エア・インテーク若しくはエンクロージャ側面を通じて行うことができます。何れの方法でも、エンジンを安全に移動するための取り外し可能なレールシステムを使用します。当システムはご要望に応じてパッケージ内部に取り付けることもできます。

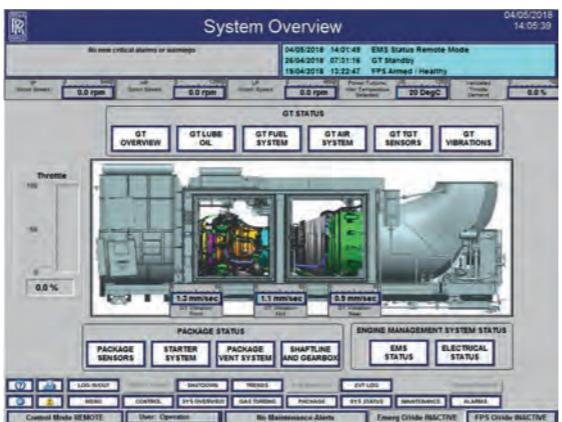
エンジン取卸しシステムは、エンジン全体を48時間未満で交換できるように設計されておりますが、実際にはこの交換作業は36時間未満で行われております。

MT30は2005年に1500時間のABS耐久試験に合格しており、これに要した期間は6ヶ月未満でした。尚、試験は全日程を通じて摂氏38度それ以上の環境下に於いて行われました。MT30は、このような現場環境に合わせた困難な試験プログラムに合格した最初のガスタービンであり、MT30のオーバーホール間隔が世界一であるという信頼性を証明するものです。

MT30は取外し可能なレールシステムを使用しており、エンクロージャ側面またはエアインレットからの取卸しが可能です。最適化されたパッケージと工具類の設計により、36時間以内にエンジン全体の取卸しと交換が可能です。

高可動性、運用コストの低減につながるモジュール式システム

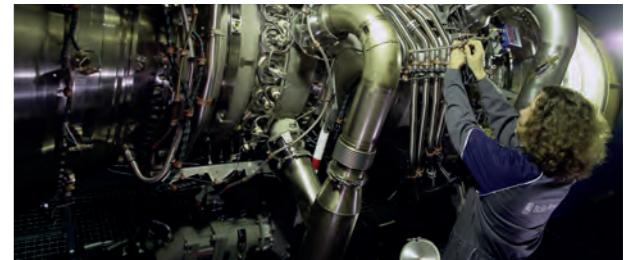
MT30のモジュール設計は、モジュール毎のオーバーホールまたは「保管」を可能とし、不要なコスト発生を防ぎます。モジュール方式は、エンジン間でモジュールを交換することにより、修理所要期間を効率化します


最小の整備コスト 定期整備では1週間あたり 2人時間未満を実現

完全統合制御システム

MT30の制御システムは、オーバースピード制御を含む統合型警報監視制御機能を有しております。内蔵式バックアップ電源はオプションの一つです。分散処理構造は最新のデータバス技術を使用することにより、配線を単純化し、コネクタの数を減らしており、またメインプロセッサと電源をパッケージ外装に配置することで、高い信頼性を提供します。このシステムは二重冗長データパスと配線信号によるエンジン制御とモニタリングにより無人航行も支援しており、プラットホームの制御システムに完全に統合しています。あらかじめ設定したエンジン/パッケージのデータを記録するようセットすることも可能で、このデータは取り卸したエンジンのヘルスモニタリングやロジスティックスのサポートに使用します。また、エンジン及びパッケージで必要なパラメータが表示されるローカル・コントロールパネルが備えられており、エンジン機能、整備、校正作業を管理する事が出来ます。

ローカル・コントロールパネルは
エンジンの全パラメータを表示し
現場での管理を可能とすると共に
校正・整備作業を容易にします


エンジン可用性を最大化し、運用期間を通じたコスト削減のため多様なサポートオプションを提供しています

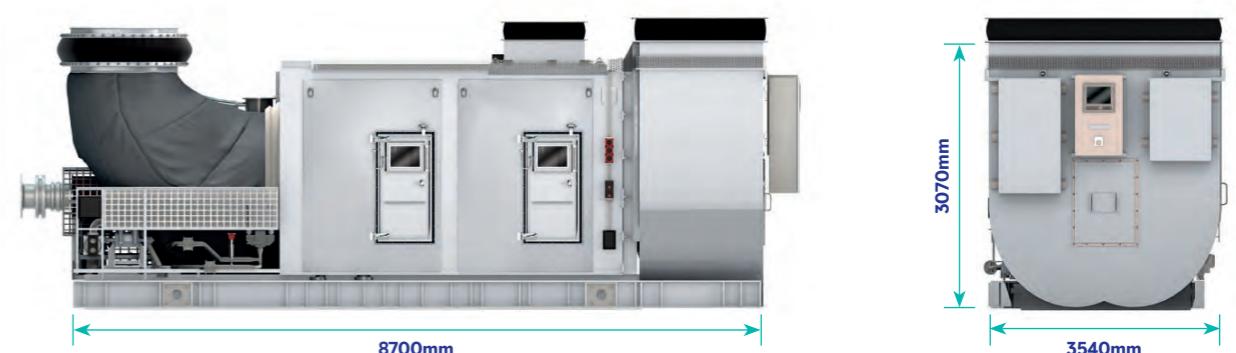
コンパクト化したモジュール 簡略化された船体設置

MT30の設計に於いては、全てのエンジン補機システムをベースプレートに組み込むことにより、スターターへのエネルギー供給や燃料・水の供給、及び電気接続のみに制限し、造船会社によるエンジン搭載を容易にします。

モジュール方式の設計により、MT30は一回の吊り上げ作業での搭載が可能であり、また船体設計要求を満たすよう吸気及び排気構成が出来る仕組みとなっております。このコンセプトにより、ユニットにエンジンを装備し、工場で試験済のユニットがエンジンと共に工場に納入され、到着後直ぐに低リスクでの搭載、試運転が可能となります。

完全にパッケージ化されたモジュールは、動力源またはオルタネーターと専用のアコースティック・エンクロージャにより完成された発電機に供給することが出来ます。外装は顧客の騒音仕様を満たす様、仕様変更が可能です。

信頼できるサポート体制


全てのロールス・ロイス製船舶用ガスタービンに於いて総合的なサポートオプションを準備しています。運用期間を通じ、最小のコストにて最大のエンジン可動性、技術及び財務リスクを管理することが可能となります。エンジン支援プログラムは、イベント毎に実施する整備から、サポートオプションのメニューから選択した包括支援契約に至るまで、幅広く兼ね備えております。

代表的なサポート・パッケージは以下を含んでおります

- 補用品の提供
- 顧客向けトレーニング
- 機器のヘルスモニタリング
- 24時間対応ヘルプデスク
- 世界的な支援チーム
- オンボード・メンテナンス及び故障探求支援
- 補用部品入手性、補充及び在庫管理
- エンジン・オーバーホール
- 補用エンジンの管理

MT30オルタネーター・パッケージは英國海軍のクイーン・エリザベス級空母と米国海軍のDDG1000駆逐艦に搭載されております

© CROWN COPYRIGHT

1. 豪海軍ハンター級フリゲート (英海軍26型フリゲート)
2. 伊海軍揚陸艦
3. 海上自衛隊 護衛艦「もがみ」型 (30FFM)
4. 海上自衛隊 イージス・システム搭載艦
5. 英海軍26型フリゲート
6. 米海軍ズムウォルト級駆逐艦
7. 米海軍フリーダム級LCS
8. 加海軍リバー級駆逐艦
9. 韓国海軍大邱級フリゲート(FFX II)/忠南級フリゲート(FFX III)/蔚山級フリゲート(FFX IV)
10. 英海軍クイーン・エリザベス級空母

© Rolls-Royce plc 2025

本書に記載された情報はロールス・ロイスplcの保有物であり、複写または第三者への提供、あるいは使用は、どのような目的であっても、書面によるロールス・ロイスplcの同意がない場合は禁じられています。

ここでの情報はロールス・ロイスplcが知りうる最新の情報に基づいて誠実に提供されたものですが、この情報については保証または表明を意味するものではなく、ロールス・ロイスplcまたはその子会社あるいは関連会社による契約または関与を表すものではありません。

REF: VCOMB 3258